# **CRYSTALLIZATION PAPERS**

Acta Cryst. (1998). D54, 1395-1396

# Crystallization and preliminary X-ray crystallographic analysis of archaeal $O^6$ -methylguanine–DNA methyltransferase

Hiroshi Hashimoto,<sup>a</sup> Motomu Nishioka,<sup>b</sup> Tsuyoshi Inoue,<sup>a</sup> Shinsuke Fujiwara,<sup>b</sup> Masahiro Takagi,<sup>b</sup> Tadayuki Imanaka<sup>c</sup> and YASUSHI KAI<sup>a</sup>\* at <sup>a</sup>Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan, <sup>b</sup>Department of Biotechnology, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan, and <sup>c</sup>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshidahonmachi Sakyo-ku, Kyoto 606-01, Japan. E-mail: kai@chem.eng.osaka-u.ac.jp

(Received 7 January 1998; accepted 1 August 1998)

#### Abstract

Crystals of archaeal O<sup>6</sup>-methylguanine-DNA methyltransferase (MGMT) from hyperthermophilic archaeon Pyrococcus kodakaraensis strain KOD1 have been grown at room temperature using polyethylene glycol as a precipitant. The diffraction pattern of the crystal extends to 2.0 Å resolution at room temperature upon exposure to Cu  $K\alpha$  radiation. The crystal belongs to the space group  $P2_12_12_1$  with unit-cell dimensions of a = 52.8, b = 86.6 and c = 39.9 Å. The presence of one molecule per asymmetric unit gives a crystal volume per protein mass  $(V_m)$  of 2.3 Å<sup>3</sup> Da<sup>-1</sup> and a solvent content of 48% by volume. A full set of X-ray diffraction data was collected to 2.0 Å Bragg spacings from the native crystal.

## 1. Introduction

Alkylating agents, for example, N-methyl-N',N-nitrosoguanidine, produce alkylated purine and pyrimidine bases in DNA. Among them,  $O^6$ -methylguanine appears to be most responsible for induction of mutations and cancers (Strauss et al., 1975).  $O^6$ -Methylguanine can pair with thymine to induce G·C to A·T base-pair transitions (Coulondre & Miller, 1977). These transitions are blocked by the action of suicidal  $O^6$ -methylguanine-DNA methyltransferase (MGMT). This protein transfers an alkyl group substituted at the guanine  $O^6$  to one of its own cysteine residues. Methylated MGMT is inactive in



Fig. 1. Form I crystals of MGMT with the maximum dimensions 0.2  $\times$  $0.1 \times 0.05$  mm.

© 1998 International Union of Crystallography Printed in Great Britain - all rights reserved

further O<sup>6</sup>-methylguanine–DNA repair, because active-site cysteine is blocked by covalent methylation.

 $O^{6}$ -Methylguanine–DNA methyltransferase is present in various organisms ranging from bacteria to human cells. Recently, the crystal structure of the 178-amino-acid C-terminal domain (Ada-C) of Ada protein, coded for by the ada gene, a bacterial MGMT from E. coli, was determined (Moore et al., 1994). However, no structural information on eukaryotic or archaeal MGMT has been reported.

P. kodakaraensis strain KOD1 was isolated from a solfataric hot spring of Kodakara Island, Kagoshima, Japan (Morikawa et al., 1994). This strain belongs to archaea which constitutes a third primary kingdom of living organisms sharing characteristics with prokaryotic and eukaryotic cells (Woese & Fox, 1977; Woese et al., 1990). The growth temperature and pH were 368 K and 7.0, respectively. Enzymes produced in the strain have been shown to be extremely thermostable and to have eukaryotic characteristics (Fujiwara et al., 1996).

### 2. Materials and methods

#### 2.1. Crystallization

The archaeal MGMT was overexpressed in E. coli strain HMS174(DE3)pLysS, purified (Leclere et al., 1998), and dialyzed against 50 mM Tris-HCl buffer at pH 8.0 containing 0.1 mM EDTA. The dialyzed protein was concentrated to



Fig. 2. Form II crystals of MGMT with the maximum dimensions 0.8  $\times$  $0.1 \times 0.1$  mm.

Acta Crystallographica Section D ISSN 0907-4449 © 1998

#### Table 1. Diffraction data statistics of form II crystal

| Resolution (Å) | No. of reflections (unique) | Completeness (%) | R <sub>merge</sub> |
|----------------|-----------------------------|------------------|--------------------|
| 20.00-4.30     | 1335                        | 94.1             | 0.042              |
| 4.30-3.42      | 1285                        | 97.5             | 0.064              |
| 3.42-2.99      | 1286                        | 98.5             | 0.080              |
| 2.99-2.71      | 1285                        | 98.8             | 0.101              |
| 2.71-2.52      | 1252                        | 98.4             | 0.119              |
| 2.52-2.37      | 1264                        | 98.4             | 0.144              |
| 2.37-2.25      | 1254                        | 97.6             | 0.162              |
| 2.25-2.15      | 1252                        | 98.5             | 0.192              |
| 2.15-2.07      | 1240                        | 98.7             | 0.230              |
| 2.07-2.00      | 1239                        | 98.2             | 0.286              |
| Overall        | 12692                       | 97.8             | 0.086              |

10 mg ml<sup>-1</sup>. All the crystallization experiments were carried out using the hanging-drop vapor-diffusion technique. The droplet (typically 4  $\mu$ l) was prepared by mixing equal volumes (2  $\mu$ l) of the protein and reservoir solutions. A number of precipitants, including salts, polyethylene glycol solutions, and organic solvents, were explored over a broad pH range (4.0–10.0). As a result, two forms of crystals appeared.

Form I crystals (Fig. 1) were obtained by the following procedure. The reservoir solution was prepared by mixing 400  $\mu$ l of 50%(*w*/*w*) PEG 8000, 200  $\mu$ l of 1.0 *M* Zn acetate, 100  $\mu$ l of 1.0 *M* sodium cacodylate pH 6.5 and 300  $\mu$ l distilled water, giving the final concentrations of 20% PEG 8000, 200 m*M* Zn acetate and 100 m*M* sodium cacodylate. Form I crystals were thin plates with a maximum size of 0.2  $\times$  0.1  $\times$  0.05 mm.

Form II crystals were obtained as follows. First, needleshaped microcrystals were grown against reservoir solutions of 15% PEG 8000 and 200 mM ammonium sulfate. When 15% (w/w) PEG 20000 [300 µl of 50% (w/w) PEG 20000] was used instead of PEG 8000, rod-shaped crystals appeared. When the concentration of PEG 20000 was decreased to 12% (w/w), crystals reached dimensions of 0.8 × 0.1 × 0.1 mm in a few weeks.

#### 2.2. X-ray crystallographic studies

All the X-ray diffraction measurements were made at room temperature on a Rigaku R-AXIS IIc imaging-plate detector system coupled to a Rigaku RU-300 fine-focused rotatinganode X-ray generator with a Cu target. The Laue symmetry and unit-cell parameters were determined from three still images by the *PROCESS* program package (Higashi, 1989; Sato *et al.*, 1992). The full X-ray diffraction data were processed and scaled to give a unique set of data using *DENZO* and *SCALEPACK* (Otwinowski, 1993) and systematic extinctions in the intensity data were checked by *HKLPLOT* (Eleanor Dodson, unpublished data; Collaborative Computational Project, Number 4, 1994).

#### 3. Results

When form I crystals (Fig. 1) were exposed to X-rays, the diffraction spots were observed to Bragg spacings of at least 2.0 Å. The space group was determined to be *P*1 with unit-cell parameters of a = 43.8, b = 54.2 and c = 43.8 Å,  $\alpha = 75.4$ ,  $\beta = 79.8$  and  $\gamma = 85.5^{\circ}$ . The asymmetric unit contains two molecules

with a mass of 19 500, giving a crystal volume per protein mass  $(V_m)$  of 2.5 Å<sup>3</sup> Da<sup>-1</sup> (Matthews, 1968). As the mosaicity of the crystals was estimated at more than 1° by *SCALEPACK*, the structure determination using form I crystals was abandoned.

Diffraction intensities from form II crystals (Fig. 2) were also observed to at least 2.0 Å Bragg spacings. Unit-cell parameters were determined as a = 52.8, b = 86.6 and c =39.9 Å, in space group  $P2_12_12_1$ . The asymmetric unit contains a single molecule with a mass of 19 500, giving a crystal volume per protein mass  $(V_m)$  of 2.3 Å<sup>3</sup> Da<sup>-1</sup> and the solvent content of 48% by volume. The mosaicity of the crystals was estimated to be about 0.2°; form II crystals were found to be suitable for X-ray studies. As listed in Table 1, a data set was collected. It consists of 73 204 measurements of 12 692 unique reflections with an overall  $R_{\text{merge}}$  of 8.6% ( $R_{\text{merge}} = \sum |I - \langle I \rangle| / \sum I$ ) and overall  $I/\sigma(I)$  of 9.9. This represents 97.8% of theoretically observable reflections at 2.0 Å resolution. The outermost shell of data between 2.07 and 2.00 Å is 98.2% complete. Attempts were made to solve the MGMT structure by molecular replacement with AMoRe (Navaza, 1994; Collaborative Computational Project, Number 4, 1994) and X-PLOR (Brünger, 1990) using Ada-C from E. coli as a probe structure; however no consistent set of rotation-function solutions could be obtained. MGMT from KOD1 has a low amino-acid sequence homology with Ada-C except around the active site; homology with Ada-C is about 13%. For this reason, the molecular-replacement technique may not be successful in this case. Structure determination of the MGMT by multiple isomorphous replacement methods is under way. To date, one heavy-atom derivative has been identified.

This study was partially supported by Grant-in-Aid for Science Research on Priority Areas No. 09780632, 08260211 and 09261223 from the Ministry of Education, Science and Culture, Japan.

#### References

- Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763.
- Coulondre, C. & Miller, J. H. (1977). J. Mol. Biol. 117, 577-606.
- Brünger, A. T. (1990). Acta Cryst. A46, 46-57.
- Fujiwara, S., Okuyama, S. & Imanaka, T. (1996). *Gene*, **179**, 165–170. Higashi, T. (1989). *J. Appl. Cryst.* **22**, 9–18.
- Leclere, M. M., Nishioka, M., Yuasa, T., Fujiwara, S., Takagi, M. & Imanaka, T. (1998). Mol. Gen. Genet. 258, 69–77.
- Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.
- Moore, M. H., Gulbis, J. M., Dodson, E. J., Demple, B. & Moody, P. C. E. (1994). *EMBO J.* 13, 1495–1501.
- Morikawa, M., Izawa, Y., Rashid, N., Hokai, T. & Imanaka, T. (1994). *Appl. Environ. Microbiol.* **60**, 4559–4566.
- Navaza, J. (1994). Acta Cryst. A50, 157-163.
- Otwinowski, Z. (1993). Data Collection and Processing. Proceedings of the CCP4 Study Weekend, pp. 56–62. Warrington, England: Daresbury Laboratory.
- Sato, M., Yamamoto, M., Imada, K., Katsube, Y., Tanaka, N. & Higashi, T. (1992). J. Appl. Cryst. 16, 542–547.
- Strauss, B., Scudiero, D. & Henderson, E. (1975). Molecular Mechanisms for repair of DNA, Part A, pp. 13–24. New York: Plenum Press.
- Woese, C. R. & Fox, G. E. (1977). Proc. Natl Acad. Sci. USA, 74, 5088– 5090.
- Woese, C. R., Kandler, O. & Wheelis, M. L. (1990). Proc. Natl Acad. Sci. USA, 87, 4576–4597.